700 亿参数 LLaMA2 训练加速 195%,基础大模型最佳实践再升级ChatGPT 引发的大模型热潮愈演愈烈,全球科技巨头和明星初创争相入局,打造以 AI 大模型为核心的竞...
700 亿参数 LLaMA2 训练加速 195%,基础大模型最佳实践再升级
ChatGPT 引发的大模型热潮愈演愈烈,全球科技巨头和明星初创争相入局,打造以 AI 大模型为核心的竞争力和多样化商业使用需求。其中 LLaMA 系列模型,因良好的基础能力和开放生态,已积累了海量的用户和实际应用案例,成为无数开源模型后来者的模仿和竞争的标杆对象。
但如何降低类 LLaMA2 大模型预训练成本,如何基于 LLaMA2 通过继续预训练和微调,低成本构建 AI 大模型实际应用,仍是 AIGC 相关企业面临的关键瓶颈。
作为全球规模最大、最活跃的大模型开发工具与社区,Colossal-AI 再次迭代,提供开箱即用的 8 到 512 卡 LLaMA2 训练、微调、推理方案,对 700 亿参数训练加速 195%,并提供一站式云平台解决方案,极大降低大模型开发和落地应用成本。
开源地址:github.com/hpcaitech/ColossalAI
LLaMA2 训练加速 195%
Meta 开源的 LLaMA 系列大模型进一步激发了打造类 ChatGPT 的热情,并由此衍生出了诸多项目和应用。
最新的 7B~70B LLaMA2 大模型,则进一步提高了语言模型的基础能力。但由于 LLaMA2 的预训练预料大部分来自英文通用知识,而仅用微调能够提升和注入的领域知识和多语言能力也相对有限。此外,高质量的专业知识和数据集通常被视为各个行业和公司的核心资产,仅能以私有化形式保存。因此,以低成本预训练 / 继续预训练 / 微调 LLaMA2 系列大模型,结合高质量私有化业务数据积累,帮助业务降本增效是众多行业与企业的迫切需求与瓶颈。但 LLaMA2 大模型仅发布了原始模型权重与推理脚本,不支持训练 / 微调,也未提供数据集。
针对上述空白与需求,Colossal-AI 开源了针对 LLaMA2 的全流程方案,并具备高可扩展性,支持从 70 亿到 700 亿参数的模型,从 8 卡到 512 卡都可保持良好的性能网页链接
转载请注明:700 亿参数 LLaMA2 训练加速 195%,基础大模型最佳实践再升级ChatGPT 引发的大模型热潮愈演愈烈,全球科技巨头和明星初创争相入局,打造以 AI 大模型为核心的竞... | AI 時.空 | AiTime.Space