复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来智能体会成为打开 AGI 之门的钥匙吗?复旦 NLP 团队全面探讨 LLM-based Agents。近期,复旦...
复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来
智能体会成为打开 AGI 之门的钥匙吗?复旦 NLP 团队全面探讨 LLM-based Agents。
近期,复旦大学自然语言处理团队(FudanNLP)推出 LLM-based Agents 综述论文,全文长达 86 页,共有 600 余篇参考文献!作者们从 AI Agent 的历史出发,全面梳理了基于大型语言模型的智能代理现状,包括:LLM-based Agent 的背景、构成、应用场景、以及备受关注的代理社会。同时,作者们探讨了 Agent 相关的前瞻开放问题,对于相关领域的未来发展趋势具有重要价值。
论文链接:arxiv.org/pdf/2309.07864.pdfLLM-based Agent
论文列表:github.com/WooooDyy/LLM-Agent-Paper-List
长期以来,研究者们一直在追求与人类相当、乃至超越人类水平的通用人工智能(Artificial General Intelligence,AGI)。早在 1950 年代,Alan Turing 就将「智能」的概念扩展到了人工实体,并提出了著名的图灵测试。这些人工智能实体通常被称为 —— 代理(Agent*)。「代理」这一概念起源于哲学,描述了一种拥有欲望、信念、意图以及采取行动能力的实体。在人工智能领域,这一术语被赋予了一层新的含义:具有自主性、反应性、积极性和社交能力特征的智能实体。
*Agent 术语的中文译名并未形成共识,有学者将其翻译为智能体、行为体、代理或智能代理,本文中出现的「代理」和「智能代理」均指代 Agent。
从那时起,代理的设计就成为人工智能社区的焦点。然而,过去的工作主要集中在增强代理的特定能力,如符号推理或对特定任务的掌握(国际象棋、围棋等)。这些研究更加注重算法设计和训练策略,而忽视了模型固有的通用能力的发展,如知识记忆、长期规划、有效泛化和高效互动等。事实证明,增强模型固有能力是推动智能代理进一步发展的关键因素。
大型语言模型(LLMs)的出现为智能代理的进一步发展带来了希望。如果将 NLP 到 AGI 的发展路线分为五级:语料库、互联网、感知、具身和社会属性,那么目前的大型语言模型已经来到了第二级,具有互联网规模的文本输入和输出。在这个基础上,如果赋予 LLM-based Agents 感知空间和行动空间,它们将达到第三、第四级。进一步地,多个代理通过互动、合作解决更复杂的任务,或者反映出现实世界的社会行为,则有潜力来到第五级 —— 代理社会。
作者们设想的一个由智能代理构成的和谐社会,人类也可以参与其中。场景取材自《原神》中的海灯节网页链接
转载请注明:复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来智能体会成为打开 AGI 之门的钥匙吗?复旦 NLP 团队全面探讨 LLM-based Agents。近期,复旦... | AI 時.空 | AiTime.Space