超火迷你GPT-4视觉能力暴涨,GitHub两万星,华人团队出品GPT-4V来做目标检测?网友实测:还没有准备好。虽然检测到的类别没问题,但大多数边界框都错放了。没关...
超火迷你GPT-4视觉能力暴涨,GitHub两万星,华人团队出品
GPT-4V来做目标检测?网友实测:还没有准备好。
虽然检测到的类别没问题,但大多数边界框都错放了。
没关系,有人会出手!
那个抢跑GPT-4看图能力几个月的迷你GPT-4升级啦——MiniGPT-v2。
而且只是一句简单指令:[grounding] describe this image in detail就实现的结果。
不仅如此,还轻松处理各类视觉任务。
圈出一个物体,提示词前面加个 [identify] 可让模型直接识别出来物体的名字。
当然也可以什么都不加,直接问~
MiniGPT-v2由来自MiniGPT-4的原班人马(KAUST沙特阿卜杜拉国王科技大学)以及Meta的五位研究员共同开发。
上次MiniGPT-4刚出来就引发巨大关注,一时间服务器被挤爆,如今GItHub项目已超22000+星。
此番升级,已经有网友开始用上了~
多视觉任务的通用界面
大模型作为各文本应用的通用界面,大家已经司空见惯了。受此灵感,研究团队想要建立一个可用于多种视觉任务的统一界面,比如图像描述、视觉问题解答等。
「如何在单一模型的条件下,使用简单多模态指令来高效完成各类任务?」成为团队需要解决的难题。
简单来说,MiniGPT-v2由三个部分组成:视觉主干、线性层和大型语言模型 网页链接
版权声明: 发表于 2023-10-20 8:15:43。
转载请注明:超火迷你GPT-4视觉能力暴涨,GitHub两万星,华人团队出品GPT-4V来做目标检测?网友实测:还没有准备好。虽然检测到的类别没问题,但大多数边界框都错放了。没关... | AI 時.空 | AiTime.Space
转载请注明:超火迷你GPT-4视觉能力暴涨,GitHub两万星,华人团队出品GPT-4V来做目标检测?网友实测:还没有准备好。虽然检测到的类别没问题,但大多数边界框都错放了。没关... | AI 時.空 | AiTime.Space
暂无评论...