探索大模型时代下的文档识别与分析【GPT4-V带来的挑战与机遇】中国图象图形学学会青年科学家会议是由中国图象图形学学会青年工作委员会发起的学术会议。本会议面...

贴文 1个月前
570 0

探索大模型时代下的文档识别与分析【GPT4-V带来的挑战与机遇】

中国图象图形学学会青年科学家会议是由中国图象图形学学会青年工作委员会发起的学术会议。本会议面向国际学术前沿与国家战略需求,致力于支持图象图形领域的优秀青年学者,为青年学者们提供学术交流与研讨的平台,促进学者之间的交流与合作。会议同时邀请工业应用部门与学会青年学者做深入交流,鼓励图象图形领域的“产学研”合作,会议中合合信息的丁凯博士为大家带来了 《文档图像大模型的思考与探索》 的分享。让我们一起走进合合信息丁凯博士的演讲,看看大模型技术的加持下,智能文档处理领域有哪些方面的进展与突破。下文内容为根据丁凯博士的分享总结而来。

GPT4-V在IDP领域的表现
针对GPT4-V在IDP领域的表现,上述文章来源于微软对GPT4-V的测评报告。从报告中我们可以得知,在场景文字识别方面,GPT4-V在多种场景、语言形态和语言种类上都取得了良好的结果。同时,对于手写草稿、几何图形和文字结合的教育场景,以及公式理解等方面,GPT4-V也表现出色。相较于以往需要多个模型协同工作并在特殊场景下进行定制,GPT4-V在这些方面的表现令人印象深刻。

进一步观察GPT4-V在表格和信息抽取层面的表现,我们可以从两张图中看到,在这些方面GPT4-V的识别和信息抽取效果也相当不错。它不仅能够从证件等简单版式中抽取关键信息,还能处理复杂版式、多图像和自然场景结合的情况,展现了强大的抽取和推理能力。以一张包含啤酒价格推断的账单为例,GPT4-V能够分析自然场景中的啤酒,然后结合账单中的信息计算出价格。

此外,GPT4-V在文档领域也有出色表现,尤其在流程图、曲线图、表格等图标的识别和理解方面展现出潜力。对于建筑设计图、生物、地理和物理等文档,GPT4-V也能够进行良好的识别和推理。相对于传统方法,特别是在泛化能力方面,GPT4-V展现出更高的水平。针对这些我们现有的一些IDP的识别、分析、理解的算法都是非常大的挑战; 网页链接

暂无评论

暂无评论...